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We study the thermal and electric transport of a fluid of interacting Dirac fermions using a Boltzmann
approach. We include Coulomb interactions, a dilute density of charged impurities, and the presence of a
magnetic field to describe both the static and the low-frequency response as a function of temperature T and
chemical potential �. In the quantum-critical regime ��T we find pronounced deviations from Fermi-liquid
behavior, such as a collective cyclotron resonance with an intrinsic collision-broadened width and significant
enhancements of the Mott and Wiedemann-Franz ratios. Some of these results have been anticipated by a
relativistic hydrodynamic theory, whose precise range of validity and failure at large fields and frequencies we
determine. The Boltzmann approach allows us to go beyond the hydrodynamic regime and to quantitatively
describe the deviations from magnetohydrodynamics and the crossover to disorder-dominated Fermi-liquid
behavior at large doping and low temperatures, as well as the crossover to the ballistic regime at high fields.
Finally, we obtain the full frequency and doping dependence of the single universal conductivity �Q which
parametrizes the hydrodynamic response.
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I. INTRODUCTION

Graphene attracts a lot of interest due to the massless
Dirac fermions which constitute the low-energy quasiparti-
cles of the undoped material.1–4 At finite temperature and
moderate doping, they form a Coulomb interacting electron-
hole plasma of Dirac fermions whose transport properties are
rather peculiar and significantly differ from a standard Fermi
liquid. Indeed, it has been argued that graphene is a
quantum-critical system,5–10 in the sense that the inelastic-
scattering rate is solely set by the temperature and propor-
tional to kBT /�. To date the quantum-critical and relativistic
nature of such Dirac liquids and their dynamic properties
have not been very systematically explored, despite the
rather fascinating possibility it offers of studying aspects of
relativistic plasma physics in an easily accessible tabletop
solid-state system.

In a previous work,11 a hydrodynamic approach describ-
ing the thermoelectric transport properties of such systems
has been put forward. It predicts a highly constrained form of
the frequency-dependent response functions and their depen-
dence on doping, magnetic field, and temperature. The hy-
drodynamics leaves undetermined only one transport coeffi-
cient in the form of a conductivity �Q, whose universal value
for an undoped system was recently calculated in Ref. 10.
The magnetohydrodynamic analysis further suggests the
presence of a collective cyclotron resonance whose origin in
the quantum-critical window is a genuine many-body effect.
It arises due to particles and holes colliding at a high rate
with each other while collectively executing an orbiting mo-
tion at a significantly lower cyclotron frequency.

The prediction of this interesting relativistic behavior was
originally initiated by studies of a related relativistic
system12 which arises in the context of the superfluid-
insulator transition.13 The putative proximity of such a phase
transition in the parameter space of various strongly corre-
lated systems might significantly influence, if not dominate,
their low-energy physics. This motivates the study of linearly

dispersing bosonic quasiparticles which become massless at
the quantum-critical point. The application of Boltzmann
transport theory to such critical systems was described by
Sachdev14 and Damle and Sachdev,15 and was recently ex-
tended to include the effects of a magnetic field by Bhaseen
et al.13 With small modifications, the analysis presented in
this paper in the context of graphene can be applied to such
systems, too.

The hydrodynamic analysis in Refs. 11 and 12 relied on
several assumptions, such as a weak magnetic field, light
doping, and weak disorder, the limits of which remained un-
clear. Further, the conductivity coefficient �Q governing the
entire frequency-dependent response was known only at the
quantum-critical point itself, while it was not clear how the
doping-driven crossover to Fermi-liquid behavior16,17 could
be described. These gaps will be closed by the present analy-
sis, which, similar to related work on graphene and other
critical systems,10,13–15 starts from a microscopic approach
based on the Boltzmann equation, yielding an intuitive
physical picture of the crossover from quantum-critical to
Fermi-liquid behavior.

Not only does the present approach allow us to compute
the coefficient �Q and its dependence on chemical potential,
frequency, and magnetic field, but we will also determine the
precise range of validity of the hydrodynamic analysis and
the leading corrections to it. The Boltzmann approach further
allows us to go beyond the hydrodynamic regime and to
explore the crossover to the disorder-dominated regime at
large doping, where we will recover all the characteristics of
a Fermi liquid. We can also study the crossover out of the
hydrodynamic regime to the regime of strong magnetic
fields, which resolves an apparent discrepancy between the
hydrodynamic and the Boltzmann approaches concerning the
value of the thermal conductivity of an undoped clean
system.12,13

Several of our results on the transport in the hydrody-
namic regime, at the limits of the latter, and on the be-
havior beyond hydrodynamics turn out to be very similar
to the exact results which have been obtained for strongly
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coupled, maximally supersymmetric conformal field theories
�CFTs�.18 The latter can be solved exactly thanks to the
anti–de Sitter �AdS�–CFT mapping to a weakly coupled
quantum gravity problem in a universe that asymptotically
becomes an AdS space. It is interesting that the present
weak-coupling approach and the exactly soluble strongly
coupled problem come to very similar conclusions regarding
the limit of the validity of hydrodynamics and certain aspects
of the physics beyond.

Summary of results. We briefly highlight our main results
that we hope to be experimentally observable in the near
future at high enough temperatures and moderate doping,
where quantum interference effects and disorder are less im-
portant than the electron-electron interactions. In the regime
where T��, graphene behaves essentially in a quantum-
critical manner and exhibits significant non-Fermi-liquid be-
havior, which smoothly crosses over to the conventional
Fermi-liquid physics at larger doping. This is reflected in the
dc conductivity �Eq. �6.3��, which in pure enough samples
exhibits a universal, interaction-limited conductivity at low
doping and crosses over to a conductivity which grows lin-
early with density upon doping. This crossover is predicted
to show up in the thermopower �xx, too, with significant
deviations from Mott’s law in the quantum-critical region, as
described by Eq. �6.5�. A similar statement holds for the
Wiedemann-Franz law and the Lorentz ratio. We emphasize
that for these effects to be seen, samples with rather low
disorder are needed. It was claimed based on some recent
experiments that disorder levels for graphene on substrates
are currently such that the Dirac physics is still dominated by
impurities.19 However, the recent experimental progress on
suspended graphene20 seems a promising route to signifi-
cantly reduce disorder levels and approach the regimes
where the above non-Fermi-liquid physics could be ob-
served. The latter is expected for clean and large enough
samples where the inelastic scattering dominates over impu-
rity scattering, while the inelastic mean free path �estimated
in Eq. �5.14�� is still smaller than the sample dimensions.

Another important prediction of our paper concerns the
existence of a collective cyclotron resonance in the quantum-
critical regime �in all response functions�, which smoothly
crosses over to the standard semiclassical resonance at high
doping. Recent experiments21–23 have observed a “nonhydro-
dynamic” cyclotron resonance in a regime of strong mag-
netic fields in which the Landau levels and their noninteger
spacing in agreement with the Dirac equation can be re-
solved. Our prediction addresses however a very different
regime at high temperatures and moderate doping where the
quantization of orbits can be neglected. In this collision-
dominated semiclassical regime, the collective response of
the electron-hole plasma averages over the cyclotron fre-
quencies of noninteracting particles and holes at typical ther-
mal energies. This translates into a resonance frequency pro-
portional to the doped carrier density �Eq. �7.32��, occurring
along with an intrinsic interaction-mediated broadening
which scales with the square of the magnetic field; cf. Fig. 7.
At high doping the resonance is predicted to turn into a sharp
peak at the semiclassical value; cf. Fig. 11.

Another consequence of the magnetic field is that it ren-
ders the thermal conductivity �xx finite, even in pure systems.

At low doping there is an interesting relationship between
�xx and the interaction-limited conductivity, which states that
the thermal conductivity is inversely proportional to the
zero-field conductivity �Eq. �7.18��. Many of these results
can be understood from a hydrodynamic point of view. How-
ever, we also predict crossovers to ballistic regimes when
either the frequency or the magnetic field is increased such
that the associated dynamic time scales become shorter than
the inelastic-scattering rate.

Our paper is structured as follows: In Sec. II we introduce
the model of a Coulomb interacting Dirac liquid, having
graphene in mind in particular. In Sec. III we briefly review
the derivation of the thermoelectric response functions via a
magnetohydrodynamic analysis, with emphasis on the under-
lying assumptions. The formalism of the Boltzmann equation
is introduced in Sec. IV. We discuss the two most relevant
modes of the system, associated with charge, momentum,
and energy currents, and show that due to a peculiarity of
two-dimensional �2D� systems a description restricted to
these modes may give asymptotically exact results. Section
V discusses transport in the absence of magnetic fields and
the dependence of the inelastic-scattering rate on doping.
The hydrodynamic predictions are recovered and the leading
disorder corrections are determined. The crossover to the
disorder-dominated Fermi-liquid regime is analyzed in Sec.
VI. Finally we discuss the magnetotransport in Sec. VII, ana-
lyzing in detail the collective cyclotron resonance and the
deviations from hydrodynamics at large fields. We conclude
with a brief summary of the main results.

II. GRAPHENE WITH LONG-RANGED COULOMB
INTERACTIONS AND COULOMB IMPURITIES

A. Model

The effective low-energy description of an undoped two-
dimensional sheet of graphene is well known to be captured
by the Dirac Hamiltonian for massless electrons, where the
Dirac spinor refers to the pseudospin degrees of freedom
associated with the two sublattices of the carbon honeycomb
lattice. In graphene, the Brillouin zone contains two in-
equivalent Dirac points �“valleys”�, each with two spin de-
grees of freedom, resulting in N=4 species of Dirac fermi-
ons. In this paper we consider the slightly more general
situation of a liquid of weakly interacting Dirac fermions at a
finite chemical potential �doping�. We assume the electrons
and holes to interact via standard 1 /r Coulomb potentials,
and allow for the presence of charged impurities providing
long-range disorder. However, we neglect electron-phonon
scattering, which is subdominant at low enough tempera-
tures. Their effects are discussed, e.g., in Ref. 24. The full
Hamiltonian is then composed of three parts,

H = H0 + H1 + Hdis, �2.1�

where

H0 = − �
a=1

N � dx�	a
†�ivF�� · �� + ��	a� , �2.2�

with the Fermi velocity vF. The latter was measured to be
approximately21,25,26 v�1.1
108 cm /s�c /300. The spinor
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representation of the wave function has the following Fourier
decomposition

	a�x,t� =� d2k

�2��2�c1a�k,t�
c2a�k,t�

	eik·x, �2.3�

where the operators cia are the electron annihilation operators
on the two different sublattices denoted i=1,2, and a is a
multi-index labeling the N fermion species, i.e., spin degrees
of freedom and the different valleys associated with the
Dirac points. The formulation of transport is simplest in a
basis which diagonalizes the Hamiltonian H0. This is accom-
plished by a unitary transformation from the Fourier mode
operators �c1a ,c2a� to the basis of chiral particles ��+a ,�−a�:

c1a�k� =
1

2

��+a�k� + �−a�k�� ,

c2a�k� =
K


2k
��+a�k� − �−a�k�� . �2.4�

We have introduced the following notation: As k is a two-
dimensional momentum, we can define the complex number
K by

K � kx + iky, where k � �kx,ky� , �2.5�

and k= �k�= �K�. Expressing the Hamiltonian H0 in terms of
�
a, we obtain

H0 = �
�=


�
a=1

N � d2k

�2��2�vFk��a
† �k���a�k� . �2.6�

In this basis the 1 /r interactions take the form10

H1 = �
a,b=1

N

�
�1�2�3�4

� d2k1

�2��2

d2k2

�2��2

d2q

�2��2


 T�1�2�3�4
�k1,k2,q���4b

† �k1 + q���3a
† �k2 − q�


 ��2a�k2���1b�k1� . �2.7�

Here

T�1�2�3�4
�k1,k2,q� =

V�q,�k1,q�

8

1 + �1�4

�K1
� + Q��K1

�k1 + q�k1
�



1 + �2�3
�K2

� − Q��K2

�k2 − q�k2
� , �2.8�

with �k1,q=vF��4�k1+q�−�1�k1�� and

V�q,�� =
2�e2

�r��q,���q�
�2.9�

is the dynamically screened Coulomb interaction. Here �r is
the dielectric constant due to the adjacent media and ��q ,��
is the dynamic screening function, which we will discuss
below. Note that we have neglected the scattering between
valleys a�c, since they involve large momentum transfers
which are strongly suppressed.

Finally, we introduce the disorder potential

Hdis =� dxVdis�x�	a
†�x�	a�x� , �2.10�

with

Vdis�x� = �
i

Ze2

�r�x − xi�
. �2.11�

Here xi denotes the random positions of charged impurities,
assumed to be close to the graphene sheet, with a charge Ze
and average spatial density �imp. Let us also express the dis-
order Hamiltonian Hdis in terms of ��a:

Hdis = �
i

�
a=1

N

�
�1�2

d2k1

�2��2

d2k2

�2��2U�1�2
�k1,k2�


 exp�ixi · �k1 − k2����1a
† �k1���2a�k2� , �2.12�

where

U�1�2
�k1,k2� = −

2�Ze2

�r�k1 − k2�
1

2

1 + �1�2

K1
�K2

k1k2
� ,

�2.13�

which corresponds to unscreened Coulomb scatterers. Note
that even though we compute specific results for Coulomb
interacting particles and Coulomb impurities, the formalism
easily generalizes to arbitrary isotropic two-body interactions
and disorder potentials coupling to the local charge density.

B. Role of screening

It is known that in d�2 generic interactions lead to a
singularity in the amplitude for collinear forward-scattering
processes.10,14,27 To regularize this singularity, we will ac-
count for screening of the interactions within the random-
phase approximation �RPA�.28,29 The dielectric function was
calculated in Ref. 29 and has the general form

��q,�� = 1 + ��kFf1� q

kF
,

�

EF
	 +

qf2� q

kF
,

�

EF
	


1 − � �

vFq
	2� ,

where f1,2 tend to constant values as � ,q→0 and � is the
fine-structure constant of graphene:

� =
e2

�r�vF
, �2.14�

which we assume to be small in the present paper, either due
to a large dielectric constant or due to its logarithmically
small renormalization at low temperature. In the static limit
and at low temperatures, the dielectric function reduces to

��q,� = 0� = 1 +
qTF

q
, �2.15�

where qTF=const
�kF��n1/2 is the Thomas-Fermi wave
vector. This leads to screening of charged impurities at finite
doping, replacing the Fourier transform of the 1 /r interac-
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tions by 2�e2

�r�q� →
2�e2

�r��q�+qTF� . However, since qTF��kF and im-
purity scattering is dominated by momentum transfers of or-
der max�kF ,T /vF�, the effect of screening is small for small
�; it will be neglected in the following. At larger �, one
would however have to deal with the screened potential of
the charged impurities.30,31

However, screening plays a crucial role in inelastic
forward-scattering processes: In the limit of collinear for-
ward scattering, where the momentum transfer tends to �
→qvF, the second term in Eq. �2.14� diverges, reducing the
scattering amplitude to zero. This regularizes the logarithmic
divergence in the inelastic-scattering cross section. Since
screening is controlled by the �small� fine-structure constant
�, we will neglect it for quantitative evaluations that focus
on the quantum-critical regime, and only retain the screening
for the purposes of regularizing the forward-scattering am-
plitude. Having this in mind, we use the simple approximate
form for the RPA screened Coulomb interaction:

Vsc�q,�� =
2�e2

�r�q�
1

1 +
�


1 − ��/vFq�2

, �2.16�

where ��� will be taken to be an independent small param-
eter throughout this paper. A typical value for the proportion-
ality constant � /� is 1/16, which is the exact result28 for �
=T=0. Having in mind small ��0.1, we will often quote
numerical values calculated for a fixed value �=0.01.

We note that screening is, however, important in the
Fermi-liquid regime to recover the standard Fermi-liquid be-
havior. A comprehensive treatment of this regime, including
dynamic screening effects, can be found in Ref. 32.

III. HYDRODYNAMICS

We are interested in the thermal and electrical transport
properties of the Dirac liquid subject to interactions and dis-
order, as well as a perpendicular magnetic field. Each of
those ingredients scatters electrons out of their linear ballistic
motion, and the relative strength of these scattering processes
defines various physical regimes. We assume the external
driving force �an electric field or thermal gradient� to be
applied with a frequency � which will always taken to be
small compared to the largest of these scattering rates. In
particular, we will not be concerned with optically driven
interband transitions.

A. Time scales

The electron-electron interactions induce a finite inelastic-
scattering rate, which close to zero doping is on the order of

�ee
−1 � �2kBT

�
�3.1�

and is thus essentially set by the temperature. This is a hall-
mark of the quantum criticality of the undoped graphene
system.9,10 At larger doping, when the chemical potential �
exceeds kBT, the inelastic-scattering rate tends to the familiar
Fermi-liquid form �ee

−1�T2 /� if the interactions are screened,

as is the case in a Fermi liquid. As will be discussed in detail
in Sec. V A, the scattering rate is stronger for unscreened
interactions. However, we will see that only thermal trans-
port is sensitive to the inelastic-scattering rate in this Fermi-
liquid regime, while the electrical and mixed thermoelectri-
cal response is dominated by other processes that are
determined only by elastic scattering from impurities.

The elastic-scattering rate induced by static charged im-
purities is naturally proportional to the density of impurities,
and will be shown to be on the order of

�imp
−1 �

1

�

�Ze2/�r�2�imp

max�kBT,��
. �3.2�

We note that the inelastic-scattering rate decreases with tem-
perature, while the elastic-scattering rate increases. The latter
is due to the fact that low-energy particles are more intensely
scattered by Coulomb impurities.

Finally, the “scattering rate” associated with a magnetic
field is the typical cyclotron frequency of a thermally excited
carrier,

�c
typ �

eB

max�kBT,��/vF
2 . �3.3�

Note that the cyclotron mass in the more familiar expression
�c=eB /m is replaced by its relativistic equivalent of a typi-
cal energy divided by the square of the relevant “speed of
light” vF.

B. Hydrodynamic regime

If the inelastic-scattering rate �ee
−1 dominates, a hydrody-

namic description of the low-frequency transport should ap-
ply. This is the case at low enough doping, at high tempera-
tures, and in moderate fields. Indeed we will show below that
the Boltzmann equation recovers precisely the predictions of
relativistic magnetohydrodynamics, with the additional ben-
efit of gaining insight into the limits of such a description. In
particular, we will find that the single transport coefficient
�Q left undetermined by the hydrodynamic formalism, as
reviewed below, is itself a function of the small parameters
��ee, �c

typ�ee, and �ee /�imp.

C. Response functions from relativistic magnetohydrodynamics

The thermoelectric response of a relativistic fluid in the
presence of a magnetic field was derived in Refs. 11 and 12
by a magnetohydrodynamic analysis for the low-frequency–
long-wavelength regime. It was shown in Ref. 11 that the
response at small wave vectors k=0 is insensitive to long-
range Coulomb interactions, which is confirmed by the
present analysis. Below we only briefly review the important
steps and state the results for the response functions for fu-
ture reference.

Hydrodynamics exploits the fact that on time scales much
longer than the inelastic-scattering time, the only remaining
dynamic modes are the diffusive currents associated with
conserved quantities, i.e., charge, energy, and momentum.
The linearization of the conservation laws in small devia-
tions from equilibrium then captures the diffusive relaxation
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from long-wavelength perturbations back to global equilib-
rium, and allows one to determine the frequency-dependent
thermoelectric response functions in the hydrodynamic
regime.33

This program was carried out for a fluid of relativistic
particles �fermions or bosons� in Refs. 11 and 12, and is
briefly reviewed for completeness in Appendix A. The deri-
vation of the hydrodynamic equations relies on relativistic
covariance and a constitutive equation expressing the rela-
tion between electrical and thermal currents. In the limit of
small thermal gradient electromagnetic fields, the specific
form of the latter is determined up to a positive coefficient
�Q with units of electric conductivity; cf. Eq. �A6�. Note that
the validity of the relativistic magnetohydrodynamic results
is therefore restricted to small magnetic fields B. This will be
explicitly confirmed by the more general Boltzmann theory
developed in Secs. IV–VII, which will result in a precise
criterion for the required smallness of B.

The thermoelectric transport coefficients describing the
current �J� and heat current �Q� response to electric fields
and temperature gradients are defined by the relation

� J

Q
	 = � �̂ �̂

T�̂ �̂̄
	� E

− �T
	 , �3.4�

where �̂, �̂, and �̂̄ are 2
2 matrices acting on the spatial x ,y
components of the driving fields. Rotational invariance in the
plane imposes the form

�̂ = �xx1̂ + �xy�̂ , �3.5�

where 1̂ is the identity and �̂ is the antisymmetric tensor with
�̂xy =−�̂yx=1. Note that the two off-diagonal entries in Eq.
�3.4� are related due to Onsager reciprocity. The thermal con-

ductivity �̂, defined as the heat current response to −�� T in
the absence of an electric current �electrically isolated
boundaries�, is given by

�̂ = �̂̄ − T�̂�̂−1�̂ . �3.6�

The analysis of the hydrodynamic equations in a weak
magnetic field yields the following frequency-dependent
response.11,12 The longitudinal and Hall conductivity are

�xx��� = �Q

��� + i� + i�c
2/��

�� + i��2 − �c
2 , �3.7�

�xy��� = −
�

B

�c
2 + �2 − 2i��

�� + i��2 − �c
2 . �3.8�

The thermopower and transverse Peltier coefficient are found
to be

�xx��� = −
���Q��/T��� + i�� − is�/�� + P��

�� + i��2 − �c
2 , �3.9�

�xy��� = −
s

B

�c
2 + �2 − i���1 − ��/�sT��

�� + i��2 − �c
2 , �3.10�

and the thermal conductivities

�̄xx��� =

− �
� + P

T
− i

s2T

� + P
� + �Q

�2

T
��� + i��

�� + i��2 − �c
2 ,

�̄xy��� = −
B

T

s2T2�

�� + P�2 − ��Q
�
��

� + P
− 2i

sT

P + �
�� + i���

�� + i��2 − �c
2 ,

�xx��� = i
�� + P�

T

�� + i�c
2/��

�� + i�c
2/��2 − �c

2 , �3.11�

�xy��� =
�� + P�

T

�c

�� + i�c
2/��2 − �c

2 . �3.12�

In these formulas a collective cyclotron frequency �c and a
damping rate � have been defined as

�c �
eB�vF

2

�� + P�
, � �

�QB2vF
2

�� + P�
, �3.13�

where B is given in SI units. To obtain results in more cus-
tomary cgs units, one should change B→B /c throughout the
paper. This shows that the speed of light merely plays the
role of a coupling constant determining the strength of the
magnetic field. By introducing a phenomenological relax-
ation rate �imp

−1 �due to weak impurity scattering� into the
momentum conservation law, one finds that the above formu-
las are simply changed by the replacement �→�+ i /�imp.
However, since disorder breaks explicitly the relativistic in-
variance by singling out its own rest frame, it is to be ex-
pected that the resulting expressions for the response are
merely qualitatively correct and become exact only in the
limit where the elastic-scattering rate is the smallest rate in
the problem. This will indeed be confirmed below.

It will be one of our aims in Secs. IV–VII to rederive
these response functions in the appropriate hydrodynamic
regime, and to establish the precise limits of the validity of
the hydrodynamic description, in particular the admissible
range of B and �. Further we will obtain explicit expressions
for the transport coefficient �Q as a function of the system
parameters, most importantly as a function of the chemical
potential �. This will shed light on the crossover from
quantum-critical relativistic response in the regime ����T,
where both particles and holes contribute to transport to the
Fermi-liquid regime ����T, where only one kind of particles
contributes. In the latter regime, we will recover the standard
laws governing Fermi liquids. We will also study the disor-
der dependence of the response functions and discuss the
crossover from the interaction-dominated to the disorder-
dominated regime.

IV. BOLTZMANN TRANSPORT

A. Applicability of Boltzmann transport theory

For the Boltzmann equation to be valid, one requires the
existence of well-defined, sharp quasiparticle excitations and
sufficiently weak interactions so that scattering does not lead
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to strong many-body correlations. This framework is of
course much more general than hydrodynamics. We there-
fore can extend our study of transport into regimes of strong
magnetic fields and disorder. However, we are always re-
stricted to a regime where kBT is much bigger than the cy-
clotron energy of thermal particles, i.e., kBT���c

typ. This
ensures that we do not need to account for the Landau quan-
tization of electron orbits and the quantum Hall effect, which
lies beyond the semiclassical Boltzmann equation. Similarly,
localization corrections which derive from quantum interfer-
ence cannot be captured by a simple Boltzmann approach.
However, as long as the interference effects do not drive the
system to become insulating �as ascertained in several recent
studies of noninteracting electrons, at least for random point-
like disorder,34,35� one can expect that the Boltzmann ap-
proach applied to a field theory with appropriately renormal-
ized parameters for interactions and disorder36,37 will capture
a large part of the phase diagram in temperature, disorder,
and interaction strength. Such an approach was recently
taken to predict a logarithmic increase with temperature of
the conductivity in clean undoped graphene.10

The central object in the Boltzmann transport theory is the
distribution matrix of the quasiparticles

f����k,t� = ���a
† �k,t����a�k,t�� , �4.1�

where there is no sum over a in the right-hand side, and we
assume the distribution functions to be the same for all val-
leys and spins. For all further discussions we will neglect the
matrix elements off-diagonal with respect to the helicity ba-
sis labeled by �, which brings us back to the familiar quasi-
particle distribution function

f��k,t� = ���a
† �k,t���a�k,t�� . �4.2�

This approximation can safely be made since we are inter-
ested in low frequencies ���kBT, where field-induced co-
herent interband transitions leading to off-diagonal correla-
tions �with f����� can be neglected. In equilibrium, i.e., in
the absence of external perturbations, the distribution func-
tions are Fermi functions

f��k,t� = f�
0�k� =

1

e��vFk−��/T + 1
, �4.3�

at the finite chemical potential �, as defined by the doping or
gate potential.

We consider the Boltzmann equation in the presence of an
electrical field E, the Lorentz force due to a perpendicular
magnetic field B=Bez, and a spatially varying temperature
T�r�:


 �

�t
+ e�E + v�,k 
 B� ·

�

�k
+ v�,k ·

�

�r
� f��r,k,t�

= − Icoll��,r,k,t��f�� . �4.4�

Here Icoll�� ,r ,k , t � �f�� denotes the collision integral due to
Coulomb interactions and impurity scattering and v�,k
=�k��k=�vFek, with ek= �k /k�, denotes the quasiparticle ve-
locity. We rewrite the equation specifying the driving gradi-
ents in the right-hand side:

�t f��r,k,t� + e�vFB�ek 
 ez� ·
�

�k
f��r,k,t�

+ Icoll��,r,k,t��f�� = FE · eE + FT · �T , �4.5�

where

FE = �
vF

T
ekf�

0�k��1 − f�
0�k�� �4.6�

and

FT = −
vF�vFk − ���

T2 ekf�
0�k��1 − f�

0�k�� . �4.7�

We seek to solve Eq. �4.4� in linear response and thus pa-
rametrize the deviation of f��r ,k , t� from its equilibrium
value in the standard way38 as

f��r,k,�� = 2�����f�
0
„k,T�r�… + f�k

0 �1 − f�k
0 �

vF

T2 ek

· 
eE���g�,�
�E��vFk

T
,�	 + �T���g�,�

�T��vFk

T
,�	�

+ f�k
0 �1 − f�k

0 �
vF

T2 �ek 
 ez�

· 
E���g�,�
�E� �vFk

T
,�	 + �T���g�,�

�T� �vFk

T
,�	� ,

�4.8�

with T�r�=T+r ·�T��� and dimensionless functions g��k�.
We note that exactly at particle-hole symmetry ��=0�, an

applied electric field generates perturbations g�
�E� with oppo-

site signs for quasiparticles and quasiholes,

g�
�E��vFk

T
,�	 = �g�E��vFk

T
,�	 , �4.9�

whereas a thermal gradient will generate symmetric pertur-
bations,

g�
�T��vFk

T
,�	 = g�T��vFk

T
,�	 . �4.10�

However, in the case of a finite chemical potential the distri-
bution function will have a generic dependence on �. Notice
also that the perpendicular components of the perturbations,
g�,�, vanish in the absence of a magnetic field.

B. Matrix formalism

In this subsection we will set up the calculational frame-
work for all subsequent discussions. A standard way to deal
with integro-differential equations consists of expanding the
solution g� into a set of basis functions �n�� ,k�,

g�,��k� = �
n

�n
�
�n��,k� ,
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g�,��k� = �
n

�n
��n��,k� , �4.11�

and expressing the integral equation as a matrix equation, by
multiplying it from the left with different basis functions and
integrating and summing over k and �, respectively.

From now on we take momenta k to be given in units of
vF

T unless stated otherwise. More generally, we will use units
in which �=kBT=vF=1 but restore these in the final results.
The scattering terms then turn into a matrix acting in the
space of expansion coefficients �n

� and �n
�, which we orga-

nize into a doublet of vectors

�� = � �� �

�� �
	 , �4.12�

allowing us to cast the Boltzmann equation into the compact
form:

�M − B
B M 	 · �� E,T = �F� E,T

0
	 . �4.13�

We have used that in linear response we can deal with the
responses to the electric field and the thermal gradient sepa-
rately. A matrix inversion yields the solution

�� E,T = � K K̄

− K̄ K
	 · �F� E,T

0
	 , �4.14�

with

K = �M + BM−1B�−1,

K̄ = M−1B�M + BM−1B�−1. �4.15�

In the above, the matrix M is the sum of three terms:

M = MCoulomb + Mimp + Mi�, �4.16�

with the first accounting for inelastic scattering due to Cou-
lomb interactions and the second describing impurity scatter-
ing, while the last derives from the time derivative in the
Boltzmann equation.

Let us consider the first two terms, corresponding to the
collision term in the right-hand side of Eq. �4.4�. For suffi-
ciently weak interactions and for dilute enough impurities,
the collision integral is given by an application of Fermi’s
golden rule to two-body collisions and to the scattering from
Coulomb impurities.14 The corresponding matrix elements
are given in Appendix B. The strength of the inelastic-
scattering rate due to electron-electron interactions is charac-
terized by �2, while the elastic-scattering rate from impuri-
ties is measured by the dimensionless parameter

� = �2� Ze2

kBT�r
	2

nimp. �4.17�

The magnetic field deflects particles from linear propaga-
tion at a rate proportional to the dimensionless parameter
characterizing the magnetic-field strength,

b =
eBvF

2

�kBT�2 . �4.18�

The relative magnitude of �2, �, and b defines various trans-
port regimes, which we will discuss below.

C. Linear response

The heat current �Q� is related to the energy current �JE�
and the electrical current �J� via

Q = JE −
�

e
J . �4.19�

Given a perturbation of the distribution function param-

etrized by �� �,�, the associated heat and electrical currents are
given by the expressions

� J�,�

Q�,�
	 = N�

�
� d2k

�2��2

kx
2

k2 f�k
0 �1 − f�k

0 �


 �
m

��,�;m�m��,k�� e�

k − ��
	 , �4.20�

where the shorthand

f�k
0
ª

1

e�k−� + 1
�4.21�

denotes the Fermi distribution. Using the matrix elements of
the driving terms �cf. Eq. �B10��, we can express this as

� J�,�

Q�,�
	 =

N

2 �
m

��,�;m� eFm
E

− Fm
T 	 . �4.22�

Using the formal solution �Eq. �4.14�� for the coefficients
�, we immediately read off the longitudinal transport coeffi-
cients defined in Eq. �3.4�:

�xx��� =
Jx���
Ex���

=
Ne2

2�
F� E · KF� E,

�xx��� = −
Jx���

�xT���
= −

NekB

2�
F� E · KF� T,

�̄xx��� =
Qx���

− �xT���
=

NkB
2T

2�
F� T · KF� T. �4.23�

In the presence of a magnetic field, the transverse transport
coefficients are finite as well and given by

�xy��� =
Jx���
Ey���

=
Ne2

2�
F� E · K̄F� E,

�xy��� = −
Jx���

�yT���
= −

NekB

2�
F� E · K̄F� T,

�̄xy��� =
Qx���

− �yT���
=

NkB
2T

2�
F� T · K̄F� T. �4.24�
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D. Choice of basis

In order to analyze the response functions, it proves es-
sential to choose a well-adapted basis �n=0,. . .,N�� ,k� to ex-
pand g�,�;��k� into. The structure of the currents and of the
driving terms �Eq. �4.22�� suggests using the modes

�0��,k� = k , �4.25�

�1��,k� = � . �4.26�

Moreover, it will be convenient to complete the basis in such
a way that the �n�2 do not contribute to the electrical and
thermal currents. Due to reciprocity, this implies in turn that
these modes do not couple to the driving fields, i.e., Fn�2

E,T

=0, or

F� E,T = �F� 0
E,T

F� 1
E,T

0�
� . �4.27�

According to Eq. �B10�, this basis choice imposes the
following two constraints for all n�2:

�
�
� d2kf�k

0 �1 − f�k
0 ��n�2��,k��0,1��,k� = 0. �4.28�

From the expressions in Appendix B, it is easy to check that
this implies the vanishing of the matrix elements

M0,n
i� = M1,n

i� = 0,

B0,n = 0 for all n � 2. �4.29�

This will play a vital role in establishing the relativistic mag-
netohydrodynamics in Sec. VII.

Note that the part of the collision integral due to elastic
scattering from disorder does not follow the same pattern.
Rather it has nonvanishing matrix elements M0n

imp for all n.
This is closely related to the breaking of relativistic invari-
ance by the disorder.

The mode �0�� ,k� is central not only because it naturally
describes the energy current but also because it has the fur-
ther important property that it is the deviation generated by a
transformation to a moving frame. Moreover, translational
invariance protects this mode from decaying due to Coulomb
interactions. Indeed, one immediately checks that momen-
tum conservation implies that �0 is a zero mode of the Cou-
lomb collision operator �see Eq. �B3��,

M0n
Coulomb = Mn0

Coulomb = 0 for all n . �4.30�

However, the momentum is not conserved by impurity scat-
tering and the magnetic field.

The relativistic linear dispersion is essential to ensure that
the “momentum mode” �0 coincides with the “energy mode”
entering the energy and heat currents. Moreover, it is because
of this relativistic dispersion that the scattering due to the
magnetic field couples �0 only to the “electrical current
mode” �1. This structure in the Boltzmann equation is cru-
cial to retrieve the relativistic magnetohydrodynamics, as
will become clear in Sec. VII.

E. Leading logarithmic approximation

A significant simplification occurs in two dimensions, as
noticed in a preceding publication.10 Indeed, a close analysis
of the two-body collision integral �Eq. �B3�� shows that there
is a logarithmic divergence in the phase space for nearly
collinear forward-scattering processes10,14 which is cut off
only at small angles of order O���, e.g., by the RPA screen-
ing of the Coulomb interactions; see Eq. �2.16�. Interaction
corrections to the linear dispersion or the inclusion of a finite
lifetime of the quasiparticles would provide a similar cutoff,
too. In the limit of weak interactions ��1 but still in the
hydrodynamic regime �assuming even smaller impurity scat-
tering rates, frequencies, and magnetic fields, � ,� /T ,b
��2�, this leads to an equilibration among excitations mov-
ing in the same spatial direction. The off-equilibrium distri-
bution function will then be characterized by an angle-
dependent effective temperature and chemical potential.
Since the angular dependence in linear response has to be
proportional to the projection of k onto the driving field,
such perturbations to the distribution functions correspond
precisely to the two modes �0 and �1 introduced in Sec.
IV D.10,39 Provided the logarithmic anomaly in the forward
scattering is sufficiently strong, the above justifies restriction
of the analysis of the Boltzmann equation to these two
modes.

To be more precise, we actually invoke that the inelastic
relaxation of all other modes �n�2 is faster by a factor on the
order of log�1 /�� than that of the electrical current mode �1,
where ��� is the screening parameter introduced in Eq.
�2.16�. Up to logarithmically small admixtures of other
modes, �1 corresponds indeed to the eigenvector of MCb

with the smallest positive eigenvalue.
It follows that we may obtain exact solutions of the Bolt-

zmann equation to leading order in �log�1 /���−1 by restrict-
ing ourselves to the ansatz

g��k,�� = �0����0��,k� + �1����1��,k� = �0���k + �1����
�4.31�

for the deviation of the distribution function. This is demon-
strated in Fig. 1, where we plot �2���=0� as a function of �.
The lower data set was evaluated within the two-mode ap-
proximation as in Ref. 10, while the upper curve was ob-
tained by solving the Boltzmann equation projecting onto 12
basis functions �n�� ,k� and inverting the resulting
matrices.40 It is clearly seen that in the limit of weak screen-
ing ��1, the two-mode approximation becomes exact.

This two-mode approximation is well justified in the hy-
drodynamic regime, where the inelastic scattering dominates
the dynamics. However, we will argue in Sec. VI A that an-
satz �4.31� also captures the relaxation-time approximation
which is widely used in the disorder-dominated Fermi-liquid
regime ��T. In the case where the inelastic scattering can
be neglected, the relaxation-time approximation even be-
comes exact, boiling down to using the single mode �1. We
will thus use ansatz �4.31� later to describe analytically the
crossover from interaction-dominated to disorder-dominated
regime. However, for most explicit results and for the entire
analytical discussion of magnetotransport, we will not resort
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to this approximation. Nevertheless, it will become clear that
the essential physics is captured by the dynamics of the two
modes �0 ,�1, which carry the information of energy and
charge currents, respectively. The matrix elements pertaining
to these two modes are given explicitly in Appendix B and
will be used in the discussion of transport in Secs. V–VII.

V. TRANSPORT IN THE ABSENCE OF A FIELD

As we will see in this section and Sec. VII, it is essentially
the slow dynamics of the momentum mode �0 which gives
rise to the special relativistic structure of the response func-
tions in the hydrodynamic regime. It is thus convenient to
treat the zero mode �0 separately and write the matrix M
=MCoulomb+Mi�+Mimp in the form

M =�
M0 M1 M2 ¯ Mn

M1 M11 M12 ¯ M1n

M2 M21 M22 ¯ M2n

] ] ]

Mn Mn1 Mn2 ¯ Mnn

� . �5.1�

Owing to Eq. �4.27�, we only need to know the inverse of
this matrix in the sector spanned by �0 ,�1 in order to calcu-
late response functions �4.23� and �4.24�. In this sector it
assumes the form

M−1 =
1

M0 − �n�1
MnMm�M−1�nm�

1 a � ¯ �

a c � ¯ �

� � � ¯ �

] ] ]

� � � ¯ �

� ,

a = − �
n�1

Mn�M−1�1n,

c = M0�M−1�11 − �
m,n�2

�MnMm
det�M�1n,1m��

det M
	 , �5.2�

where det�M�1n,1m�� are the subdeterminants of the matrix M
where the two rows 1 and n and the two columns 1 and m
have been dropped. The above expressions are very useful in
the hydrodynamic limit, where typical matrix elements of M
are much larger than the entries Mn.

A. Clean case

We recall that in the absence of disorder all Mn�2 vanish,
which simplifies the above expression for the matrix inverse
to

M−1 =
1

M0 − M1
2g1�

1 − M1g1 � ¯ �

− M1g1 M0g1 � ¯ �

� � � ¯ �

] ] ]

� � � ¯ �

� ,

g1 � g1��,�� = �M−1�11 �
ĝ1

�2 . �5.3�

Note that in this case the judicious choice of the basis �n
allows us to summarize the effect of all the modes �n�2 into
a single �frequency-dependent� matrix element g1, which en-
ters all the response functions. g1 characterizes the inelastic-
scattering rate due to electron-electron interactions as we will
detail below. In the case where the inelastic-scattering rate
dominates, it is convenient to write g1� ĝ1 /�2 to exhibit
explicitly the scaling with interaction strength, ĝ1 being a
number of order O�1�.

In general it is sufficient to use a relatively small number
of bases to obtain a good accuracy for g1. However, as we
discussed in Sec. IV E, in the hydrodynamic regime in two
dimensions, there is even a further simplification that allows
us to neglect the remaining modes �n�2 to leading order in
log�1 /��.

From Eqs. �4.14�, �B10�, and �4.23�, it is easy to show
that the response in a clean system is given by

�xx��;�,� = 0� = e2 �2vF
2

� + P

1

�− i��
+ �Q, �5.4�

where �Q=�Q�� ,�� is the �- and �-dependent transport co-
efficient

�Q��,�� =
e2

�

1

�2

N

2ĝ1
��ee

�2kBT

�
	2 1

1 − i��ee
, �5.5�

which was left undetermined in the hydrodynamic formal-
ism; cf. Eq. �3.7�. In the above we have defined the inelastic-
scattering rate as

�ee
−1 = �2 N

2ĝ1

kBT

�
�N ln�2 cosh��/2��

2�
−

�2��v�2

�� + P�T�−1

.

�5.6�
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Two modes

Exact

FIG. 1. �Color online� Dependence on the screening parameter
� of the conductivity of undoped graphene, �2���=0;��, in units
of e2 /�. At very small �, �2��0;�� approaches its limiting value
�Ref. 10� of 0.121 as �2���0;��−��0;0����log�1 /���−1, the solid
line being a fit to a+b�log�1 /���−1. The lower curve is a linear fit to
the data obtained from the two-mode approximation, which be-
comes asymptotically exact as �→0.
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B. Inelastic-scattering rate in the Fermi-liquid regime �šT

In the above expressions, ĝ1 is a scaling function of � /T
and ��ee. As long as we concentrate on the hydrodynamic
frequency regime, the latter is negligible. However, the �
dependence of ĝ1 and �ee are important.

An order-of-magnitude estimate for g1 can be obtained
from the inverse of expression �B12� for M11

Coulomb. If the
electron-electron interactions are not screened �as is the case
to lowest order in ��, this multiple integral saturates to a
finite value at large � /T. This is explained in detail in Ap-
pendix C and is borne out by direct numerical evaluation,

g1
−1�� � T� = O�1� . �5.7�

The inelastic-scattering rate for unscreened long-range inter-
actions can similarly be estimated to scale as

�ee
−1 � �2� , �5.8�

as follows from the above together with Eq. �5.6�.
If we include screening of the interactions, one finds in-

stead

g1,sc
−1 �� � T� = O��2 T2

�2	 , �5.9�

and the analogous estimate for �ee
−1 yields the familiar Fermi-

liquid behavior

�ee,sc
−1 � �2T2

�
. �5.10�

We have calculated the full function g1
−1��� in the limit of

vanishing screening �i.e., �→0�, where the evaluation via
the formula for matrix element �B12� becomes exact. The
resulting static transport coefficient �Q��=0,�� is plotted as
a function of � /T in Fig. 2. It is interesting to note that in the
regime ��T, �Q decays as �T /��2, reflecting that the rela-
tivistic physics and quantum criticality associated with the
presence of particles and antiparticles become less and less
relevant.

The above discussion refers to the typical relaxation time
for modes g�k� which vary significantly over a range of order

T around k=�. These modes are associated with so-called
vertical processes that degrade thermal currents very
efficiently.38 However, their contribution to the electrical cur-
rent is small, which is reflected by the smallness of �Q scal-
ing as �T /��2. The electrical conductivity is thus largely
dominated by the first term in Eq. �5.4�. This holds true also
in the presence of weak disorder; see Eq. �5.16� below. This
statement is independent of whether electron-electron inter-
actions are screened. However, the same is not true for the
thermal conductivity, which turns out to be sensitive to un-
screened Coulomb interactions even when ��T. This will
be discussed further in Sec. VI D.

C. Quantum-critical regime

Note that close to particle-hole symmetry, ��T, �ee
−1 is

essentially given by the temperature, �ee
−1��2kBT /�; cf. Eq.

�5.6�. This is a hallmark of many quantum-critical systems,
where often a relativistic effective theory emerges �as char-
acterized by a dynamical critical exponent z=1�41 with the
temperature T being the only energy scale left.

At particle-hole symmetry, expressions �5.4� and �5.5� be-
come identical to the results reported in a previous
publication10 for the clean limit:

�xx��,� = 0� = �Q
0 1

1 − i��ee
0 . �5.11�

In the limit �→0 one finds the explicit numerical values

�Q
0 =

1

�2

e2

�

N

2
ĝ1�0�
 log�2�

�
�2

=
0.121

�2

e2

�
=

0.760

�2

e2

h
,

�5.12�

�ee
0 =

�

�2kBT

ĝ1�0�log�2�
2�

= 0.274
�

�2kBT
, �5.13�

where we have used ĝ1�0��1.24. Accordingly, the inelastic
mean free path is evaluated as

� = vF�ee
0 =

2.3

�2T�K�
�m. �5.14�

D. Weak disorder

In a clean system, the denominator in expression �5.3� for
the conductivity vanishes as �→0 since M0 , M1��. This
reflects momentum conservation, due to which the mode �0
does not decay.

However, the presence of disorder shifts the pole from
�=0 into the negative half plane, such that the denominator
behaves as �+ i�imp

−1 . This defines the elastic-scattering rate
�imp

−1 . To leading order in weak disorder, it is given by

�imp
−1 =

���+ + �−�
� + P

=
�imp

�
��Ze2

�r
	2�+ + �−

� + P

�
�imp

�
��Ze2

�r
	2 1

max�kBT,��
. �5.15�
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FIG. 2. �Color online� The normalized transport coefficient
�Q�� ,�=0� as a function of � /T.
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One can explicitly verify that in an expansion in weak
disorder, i.e., in �imp

−1 /�ee
−1�� /�2, the conductivity is given by

�xx��;�,�� =
e2

�imp
−1 − i�

�2vF
2

� + P
+ �Q + ����,�,�� ,

�5.16�

with ���� ,� ,��=O�� /�2�.
Similarly one finds for the other thermoelectric response

functions the following:

�xx��;�,�� =
e

�imp
−1 − i�

s�vF
2

� + P
−

�Q

e

�

T
+ ����,�,�� ,

�̄xx��;�,�� =
1

�imp
−1 − i�

s2TvF
2

� + P
+

�Q

e2

�2

T
+ ����,�,�� ,

with disorder corrections of order �� , ��̄=O�� /�2�. Re-
markably, by dropping these higher-order terms, we recover
precisely the expressions predicted by relativistic hydrody-
namics with a phenomenological momentum relaxation rate
implemented via �→�+ i�imp

−1 . Since disorder breaks the
relativistic invariance of the particle-hole plasma, it is not
surprising that it eventually spoils the relativistic structure of
the response functions when the disorder-induced elastic-
scattering rate �imp

−1 becomes comparable to �ee
−1.

VI. CROSSOVER FROM QUANTUM-CRITICAL TO
“FERMI-LIQUID” REGIME AT �šT

A. Two-mode approximation

As mentioned before, in the Boltzmann approach we are
not restricted to small disorder satisfying � /�2�1. In order
to obtain an insight into the crossover from the hydrody-
namic to the disorder-dominated regime, we will adopt here
the two-mode approximation. The latter is not only conve-
nient for analytical treatments but also turns out to describe
both the interaction- and the disorder-dominated limits well.

In a regime dominated by elastic scattering, one usually
resorts to the relaxation-time approximation,

g��k� = − �� f0/�E��kvkeE . �6.1�

In the case of unscreened Coulomb scatterers, this is exact
if the relaxation time is chosen to increase linearly with the
energy, �k�k. In the “nonrelativistic” limit ��T, where
thermal excitations of only electrons or holes are relevant,
this is essentially equivalent to making an ansatz with the
single mode �1, and the corresponding relaxation time is
related to the coefficient �1 in Eq. �4.11� by

�k = ��1�
�vFk

kBT

�

kBT
. �6.2�

On the other hand, in the regime where electron-electron
scattering dominates, we have already argued that enhanced
forward scattering allows us to restrict to the two modes �0,1
to leading order in 1 / log���. This suggests that an approxi-
mate description of Boltzmann equation �4.4� restricted to
those two modes actually yields a rather accurate description

of the whole crossover from quantum-critical to disorder-
dominated regime.

In this approximation the full expression for the longitu-
dinal conductivity assumes the form

�xx��;�,�� = e2 1

�imp
−1 − i�

�2vF
2

� + P
+ �xx� ,

�xx� = e2


I+
�1� −

���I−
�1� − i���2

�I+
�2� − i��� + P��2

N

2
� 1

g1
+

�

2�
	 − i�I+

�1� −
��I−

�1� − i���
�I+

�2� − i��� + P�

,

�6.3�

with �imp
−1 as given in Eq. �5.15� and the functions I


�k����
defined in Appendix B. In the second term we have set the
factors of �=vF=kBT=1. We have decomposed the response
function into two parts: The first term is independent of the
inelastic-scattering rate �that is, of ĝ1�, and is thus entirely
determined by impurity scattering. The second term, �xx� , has
a finite dc limit as �→0, and it reduces to the quantum-
critical value of conductance of pure undoped graphene as
� , �→0. However, the first term diverges in the clean static
limit except at the particle-hole symmetric point, at which its
numerator vanishes.

At zero doping the above two-mode approximation re-
duces to the same expression as Eq. �5.11�, with the replace-
ment �2 / ĝ1→�2 / ĝ1+� / �2��. This means that an impurity
scattering rate proportional to � is added to the inelastic-
scattering rate in the denominator. The purely interaction-
dominated “quantum-critical” conductivity is thus visible
only in weak disorder, where �� /�2�ĝ1 / �2���1. Otherwise
disorder dominates the response at all dopings. The cross-
over from interaction-dominated to disorder-dominated
transport occurs when the two terms in Eq. �6.3� are approxi-
mately equal, i.e., when ���imp; cf. Fig. 3.

B. Linear conductivity at large doping

We can make direct contact with earlier studies which
considered disorder-dominated transport in the noninteract-
ing Fermi-liquid regime of graphene. From Eqs. �6.3� and
�B20� it is easy to check that at large ��T, the first term in
Eq. �6.3� dominates the static conductivity, which is thus
entirely determined by impurity scattering. The full conduc-
tivity and the contributions of either term are plotted in Fig.
3.

In the disorder-dominated limit we recover the expression
for the conductivity of noninteracting electrons in doped
graphene in the presence of Coulomb impurities, previously
reported in Ref. 4,

�xx�� = 0;� � T� �
e2�2vF

2�imp

� + P
=

2

�

1

�Z��2

e2

h

�

�imp
.

�6.4�

Note that in our approximation, where we neglect screening
of the impurities, there is no constant offset to the term linear
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in �. It would be straightforward to include RPA screening in
the impurity potential, which is known to modify the numeri-
cal prefactor of the linear density dependence16,17,42 in Eq.
�6.4� and produce a positive offset proportional �2; see Ref.
43.

C. Mott’s law

In the regime ��T we expect to recover ordinary Fermi-
liquid behavior. In the approximation with two modes �0,1,
the thermopower �xx is given by

�xx��,� = 0� =
es�vF

2�imp

� + P
+ �xx� ,

�xx� = − �I+
�1� −

I−
�1��

I+
�2� 	 sI−

�1� + I+
�2���I+

�1� − ��
I+

�2�/g1 − ��I−
�1��2 , �6.5�

where in the second term we have again dropped factors of
� , vF , kB, and T. At large ��T, the first term dominates
again, similarly as for the conductivity.

In a Fermi liquid where scattering at low temperature is
dominated by impurities, one expects the thermopower to be
related to the conductivity according to Mott’s law,

�xx��,� = 0� = −
�2

3e
kB

2T
d���,� = 0�

d�
. �6.6�

Indeed, using Sommerfeld expansions for � and s in the
above results, one can easily show that this relation holds for

��T. Not unexpectedly, however it fails in the quantum-

critical regime ��T. The ratio −
3ekB

2T

�2

�xx���
d�/d���� is plotted in

Fig. 4 as a function of � /T �assuming unscreened electron-
electron interactions�. Note that �xx tends to zero as � van-
ishes. The same holds for d� /d���� but the ratio of the two
quantities remains finite.

D. Wiedemann-Franz law

In the clean limit, the Lorentz ratio

L =
�xx

�xx
�6.7�

diverges as �→0 instead of acquiring the standard Fermi-

liquid value of
kB

2T

e2
�2

3 . This is another peculiarity of the
quantum-critical regime.

One would expect to recover the Fermi-liquid value of the
Lorentz ratio, or in other words the Wiedemann-Franz law,
by going to sufficiently low temperatures in the Fermi-liquid
regime ��T. This is indeed so if we assume the electron-
electron interactions to be screened, such that inelastic-
scattering processes degrading the energy current become in-
efficient as compared to impurity scattering at low T. This is
also in qualitative agreement with the thorough analysis in
Ref. 32, which in addition discusses the contribution of
bosonic particle-hole excitations to thermal transport.

If the interactions are not screened, however, the Lorentz
ratio remains sensitive to them and does not reduce to the
Fermi-liquid value. The reason is as follows: Even though an
expression analogous to Eqs. �6.3� and �6.5� exists for �̄xx
and is dominated by its first term s2TvF

2�imp / ��+ P�, the same
is not true for the thermal conductivity �xx= �̄xx−T�xx

2 /�xx,
which is sensitive to the subleading corrections to the domi-
nant terms in �xx , �xx, and �̄xx. If the electron-electron in-

FIG. 3. �Color online� The dc conductivity �2�xx in units of
e2 /� as a function of the ratio of doped carrier density to impurity
density. The disorder strength and temperature have been chosen
such that � /�2=0.25. The plot shows the crossover from the
quantum-critical regime, where the conductivity is essentially lim-
ited by inelastic scattering between electrons, to the regime domi-
nated by elastic scattering from Coulomb impurities at higher dop-
ing. In the latter regime the conductivity increases linearly with
doped carrier density; see Eq. �6.4�. The inset shows the two con-
tributions to the conductivity corresponding to the two terms in Eq.
�6.3�. The contribution which decreases with doping comes from
“modes” relaxing due to inelastic scattering. The contribution which
increases with doping is due to the momentum mode, which is only
disorder limited and dominates at large density.

−4 −2 2 4
µ
T

2

4

6

8

10

12

14

−
3 αxx

xxd /dσ µπ2

FIG. 4. �Color online� The ratio R�−
3ekB

2T

�2

�xx���
d�/d���� as a function

of � /T. In the Fermi-liquid regime ���T�, R tends to 1 as pre-
dicted by Mott’s law.
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teractions are not screened, implying that ��ee
−1����� for

large �, the effects of these interactions persist in these sub-
leading terms even deep in the Fermi-liquid regime ��T.

VII. MAGNETOTRANSPORT

In this section we turn to transport in the presence of a
magnetic field. The matrix formalism with the appropriate
choice of basis functions will prove particularly useful to
recover the hydrodynamic response and to find explicit ex-
pressions for the more general structure of the thermoelectric
response functions. To this end, we need to develop the ma-
trix formalism in Sec. IV. We anticipate that the dynamics of
the momentum mode �0 captures most of the physics in the
hydrodynamic regime. It is therefore convenient to introduce
a notation that singles out the components pertaining to it:

�� �,� = ���,�
0

�� �,��
	, FD = �F0

D

F� D	 , �7.1�

where D=E ,T. We recall that our basis choice implies F� D

= �F1
D ,0 , . . . ,0�T. Further, for the matrices in the Boltzmann

equation, we have

M = �M0 M� 1
T

M� 1 M
	, B = �B0 B� 1

T

B� 1 B
	 . �7.2�

It proves convenient to define a 2
2 matrix

R0 = �M0 − B0

B0 M0
	 , �7.3�

as well as 2
 �2N� and �2N�
2 matrices R1 ,R1,

R1 = �M� 1
T − B� 1

T

B� 1
T M� 1

T
	, R1 = �M� 1 − B� 1

B� 1 M� 1

	 . �7.4�

This allows us to reformulate the matrix equation, splitting it
into a zero component,

R0���
0

��
0 	 + R1��� ��

�� ��
	 = �F0

D

0
	 , �7.5�

and a vector component,

�M − B

B M 	��� ��

�� ��
	 = �F� D

0�
	 − R1���

0

��
0 	 . �7.6�

Defining

G = �M − B

B M
	−1

, �7.7�

we can formally solve for the vector

��� ��

�� ��
	 = G
�F� D

0
	 − R1���

0

��
0 	� . �7.8�

Inserting in Eq. �7.5� and solving for the zero mode compo-
nents leaves us with

���
0

��
0 	 = �R0 − R1GR1�−1
�F0

D

0
	 − R1G�F� D

0�
	� .

�7.9�

The response functions can finally be calculated from the
solution for ��,�

0,1 .

A. Magnetotransport in the absence of disorder

Significant progress can be made due to a great simplifi-
cation which occurs in the above formulas if there is no
disorder. As we have shown in Eq. �4.29�, in this case the

vectors M� 1 and B� 1 have only one nonvanishing component,

M� 1=M1e�1 and B� 1=B1e�1. The same holds in general for the

driving terms, F� D=F1
De�1. One can then easily convince one-

self that one only needs to know the 2
2 matrix

G � �e�1
T

e�1
T 	G�e�1 e�1 � � � g1 g2

− g2 g1
	 , �7.10�

where

g1��,B� � e1
T · �M + BM−1B�−1e1,

g2��,B� � e1
T · M−1B�M + BM−1B�−1e1, �7.11�

and the 2
2 matrix

R1 = �M1 − B1

B1 M1
	 =

2

N
� − i�� − BI+

�1����
BI+

�1���� − i��
	 ,

�7.12�

both acting in �� ,�� space. I+
�1� is defined in Appendix B.

Further note that for B=0, g1 coincides with the transport
coefficient defined in Eq. �5.3�. For convenience we give the
explicit form of R0 �Eq. �7.3�� using results from Appendix
B:

R0 =
2

N
�− i��� + P� − B�

B� − i��� + P�
	 . �7.13�

The above equations immediately yield the solution for the 0

and 1 components of �� �,�,
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���
0

��
0 	 = �R0 − R1GR1�−1
�F0

D

0
	 − R1G�F1

D

0
	� ,

���
1

��
1 	 = G
�F1

D

0
	 − R1���

0

��
0 	� . �7.14�

It is a simple matter to express all response coefficients using Eq. �4.22�. For the thermal conductivity, e.g., one finds

�̄xx =
N

2
�F0

T F1
T � · � ��R0 − R1GR1�−1��,� − ��R0 − R1GR1�−1R1G��,�

− �GR1�R0 − R1GR1�−1��,� �G + GR1�R0 − R1GR1�−1R1G��,�
	�F0

T

F1
T 	 ,

�̄xy =
N

2
�F0

T F1
T � · � ��R0 − R1GR1�−1��,� − ��R0 − R1GR1�−1R1G��,�

− �GR1�R0 − R1GR1�−1��,� �G + GR1�R0 − R1GR1�−1R1G��,�
	�F0

T

F1
T 	 . �7.15�

These expressions are further analyzed below.

B. dc response of pure samples in a magnetic field

1. Small fields: Hydrodynamic regime

The hydrodynamic regime corresponds to the limit �ee
−1

�� ,�c, where one may approximate

g1 � �M−1�11 + O���c
typ�ee�2� ,

g2 � O��c
typ�ee� . �7.16�

We will see that corrections to higher order in the magnetic
field correspond to corrections beyond the hydrodynamic
analysis, as the latter indeed relies on the smallness of the
magnetic field. In Eq. �7.34� we will give a quantitative cri-
terion for the onset of corrections in large fields.

At finite magnetic field and in the absence of disorder, the
Boltzmann transport theory predicts a vanishing dc conduc-
tivity and thermopower,

�xx�� = 0� = �xx�� = 0� = 0. �7.17�

This can be understood as a consequence of Lorentz invari-
ance: In a reference frame moving at the constant velocity
vD=E
B /B2 with respect to the laboratory frame, the ob-
served electric field vanishes and, hence, in that frame all
currents vanish. Upon transforming back, since vD is perpen-
dicular to E, this implies also a vanishing longitudinal re-
sponse to the electric field in the laboratory frame. The trans-
verse dc response takes an equally simple form: It yields the
standard Hall effect, �xy =� /B, and the transverse Peltier ef-
fect, �xy =s /B, which can be interpreted as charge and en-
tropy density drifting with the velocity vD.13 These results
are in agreement with the hydrodynamic description in Sec.
III, but hold much more generally due to Lorentz invariance,
even when �c

typ�ee�1.
In contrast to the electrical conductivity and the ther-

mopower, the longitudinal thermal conductivity of clean in-
teracting Dirac particles remains finite in the dc limit. From
formula �7.15� and matrices �7.12� and �7.13�, one finds after
some algebra the result

�̄xx =
�� + P�2�Q

�2 + B2�I+
�1��4�g1

2 + g2
2� − 2�g2B�I+

�1��2 .

The expression simplifies further at particle-hole symmetry,
where �=0 and the matrix G is diagonal �g2=0�. This is a
consequence of M and B being symmetric and antisymmet-
ric with respect to �→−�, respectively. g2 vanishes since it
is an expectation value of a matrix antisymmetric under �
→−�, evaluated on the mode �1, which has definite symme-
try under the same transformation.

Using �Q��=0�=g1�I+
�1��2 ��=0=0.156e2 /��2 �for

�=0.01�, we find

�xx�� = 0,� = 0� = �̄xx�� = 0,� = 0� =
1

B2

s2T

�Q�0�

= CMHD�2� T2

eBvF
2 	2

kB
2T , �7.18�

with

CMHD =
1

0.156

9��3�

�
�2

= 76.0. �7.19�

Note that expression �7.18� is precisely the prediction of
magnetohydrodynamics; cf. Eq. �3.11�.

The transverse response at particle-hole symmetry is
found to vanish in a closed circuit,

�̄xy�� = 0,� → 0� = 0, �7.20�

in agreement with hydrodynamics as well. However, �xy di-
verges, since

�xy�� = 0,� = 0� = −
�xy

2

�xy
�

B

�
→ � . �7.21�

Note that, similarly as in the hydrodynamic approach, the
limits B→0 and �→0 do not commute. That is, the small-
field limit of the dc response discussed above does not cor-
respond to the dc limit of the B=0 response. Indeed, the
latter diverges in general as 1 /� due to momentum conser-
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vation except at zero doping, whereas any finite field B leads
to a vanishing dc conductivity in clean systems.

2. Large fields: Ballistic regime

The Boltzmann approach allows us to go beyond the hy-
drodynamic regime. In particular, it is interesting to study the
large-field limit and how the crossover, as controlled by the
parameter b /�2, takes place. The static response in the re-
gime where this parameter is small and the inelastic-
scattering time is the shortest time scale was discussed
above. Further, in Sec. VII C we will show that the complete
low-frequency response is well described by relativistic mag-
netohydrodynamics, too.

The regime of large fields can be addressed by determin-
ing the deviations from equilibrium in a perturbative expan-
sion in �2 /b. Such an approach was taken in Ref. 13, where
the thermoelectric response of relativistic bosons was stud-
ied. Those are the low-energy quasiparticles expected at the
transition from a commensurate Mott insulator to a super-
fluid, for which the simplest model is the Wilson-Fisher fixed
point occurring in a �4 theory. In an �=3−d expansion15,41

around d=3, the fixed-point value of the quartic coupling
scales as �, which takes the role of � in our case. In the spirit
of an � expansion, the authors of Ref. 13 assumed � to be
small and thus focused on the “ballistic” limit of magnetore-
sponse, where the parameter b /�2 is large. Here we analyze
the large-field limit in an analogous way and work out the
crossover to the hydrodynamic low-field regime.

We recall that the field should still be weak enough to
avoid the effects of Landau quantization. This requires that
the typical cyclotron energy ��c

typ be smaller than kBT or,
equivalently, b�1.

In the regime, �2�b�1 the transverse deviation of the
distribution functions leads to a transverse current whose de-
flection by the magnetic field balances the current-driving
tendency of the applied fields. The longitudinal currents are
smaller by an extra factor of �2 /b. Formally, to leading or-
der, the solution of Boltzmann equation �4.4� is given by

�� � � − B−1F , �7.22�

�� � � − B−1MCoulomb�� � = B−1MCoulombB−1F . �7.23�

Let us focus on the thermal response again. Writing the
driving thermal gradient as

F�k� = − f�k
0 �1 − f�k

0 �gT��,k� � T · ek, �7.24�

where gT�� ,k�=k−��, we find from Eq. �7.22�

g���,k� = −
�k

b
gT��,k���T� . �7.25�

The longitudinal component follows from the balance be-
tween the deflection of the longitudinal current and the in-
elastic collisions which degrade the transverse currents,

g���,k�f�k
0 �1 − f�k

0 � = −
�k

b
�MCoulombg����,k� . �7.26�

We focus on the particle-hole symmetric case, where from
Eq. �7.25� g��� ,k�=�k2�−�T� /b. The longitudinal thermal
conductivity �xx turns out to scale parametrically in the same
way as in the hydrodynamic regime but with a different nu-
merical prefactor:

�̄xx�� = 0,� = 0� = �xx�� = 0,� = 0� = Cb��2�2� T2

eBvF
2 	2

kB
2T .

�7.27�

Here,

Cb��2 =
N

2
g̃ · MCoulombg̃

�
N

2 �
�
� d2k

�2��2 g̃��,k�Icoll
Coulomb��,k��g̃�� = 383.98,

�7.28�

where g̃�� ,k�=�k2, and we have regularized the collision
term by fixing the RPA screening to �=0.01. The crossover
from the magnetohydrodynamic regime to the regime of
large fields has been calculated using the full matrix formal-
ism in Sec. VII A with 12 basis functions, and the result is
plotted in Fig. 5. Notice that the crossover extends over
rather large fields before asymptotic limit �7.28� is reached.

C. ac response in a magnetic field

1. Cyclotron resonance

From expression �7.15� it is easy to infer that all response
functions have a pole in the complex-frequency plane where
the determinant

Det�R0 − R1GR1� = 0 �7.29�

vanishes. This defines the cyclotron resonance �� as a func-
tion of B and �. Its trace in the response is illustrated in Fig.
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MHD

FIG. 5. �Color online� The thermal conductivity at particle-hole
symmetry scales as �xx�B−2 both at small and at large B. The plot
shows the coefficient C in the relation �xx��=0;B�=C�2 /b2kB

2T as
a function of b /�2��c

typ�ee. It interpolates between the magneto-
hydrodynamic regime �Eq. �7.19�� and the large-field limit of Eq.
�7.28�.
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6, where the real and imaginary parts of the longitudinal
conductivity are plotted as a function of frequency, exhibit-
ing a clear resonance.

Condition �7.29� is equivalent to

�� =
�B

� + P
− i�g1���,B� − ig2���,B��

B2

� + P
�I+

�1� − ����2.

�7.30�

At small B the solution is given by

�� � �c − i� = �c
�0� − i��0� + ��0�
g1�0,0�I+

�1��c
�0� −

g2�0,B�
g1�0,0� �

+ O�B4� , �7.31�

with

�c
�0� =

�B

� + P
, ��0� = �Q��,0�

B2

� + P
, �7.32�

where �Q�� ,�=0� was given in Eq. �5.5�. Note that the
expression to order O�B2� is in precise agreement with the
predictions from magnetohydrodynamics; cf. Eq. �3.13�.
However, here we have the additional benefit of obtaining
precise information on the dependence of the broadening �
��Q on the chemical potential, as well as on the leading
corrections in large fields.

The evolution of the cyclotron resonance with increasing
magnetic field is shown in Fig. 7 for three different values of
small fields. Note that the peak value of the resonance de-
creases as 1 /B3, while its width increases as B2.

We can also include the effect of weak disorder in the
determination of the cyclotron resonance. In the most general
case we would have to look for a zero of

Det�R0 − R1GR1� = 0 �7.33�

in the complex-frequency plane.
However, similarly as in the calculation of the impurity

scattering rate �imp
−1 �Eq. �5.15��, one can check that to lowest

order in �, only the impurity scattering of the momentum
mode enters via the matrix element M0

imp, and we can restrict
ourselves to the analysis of Eq. �7.29� with modified M0.
Including the latter into the equation for ��, one finds that
the pole is simply shifted by i�imp

−1 . Such an effect was antici-
pated by the inclusion of a phenomenological momentum
relaxation rate in the relativistic hydrodynamics,11,12 and is
put on a rigorous basis here. Of course, the above discussion
of disorder effects is meaningful only as long as the impurity
scattering rate is the smallest scale in the problem, i.e., for
��b ,�2.

To avoid confusion, we point out that the collective reso-
nance frequency �c differs from �c

typ �Eq. �3.3��, which we
have defined as the cyclotron frequency of noninteracting
particles at thermal energies. The difference is particularly
marked in the critical regime ��T, where �c is significantly
smaller than the cyclotron frequency of noninteracting ther-
mal particles. It describes the orbiting motion of the strongly
colliding relativistic plasma as a whole, where single par-
ticles do not have enough time to complete an orbit but con-
stantly collide with others, undergoing a collective motion
with average frequency �c�� proportional to the doped
density.

2. Large fields: Beyond hydrodynamics

Inspecting Eq. �7.31�, an estimate for the field strength
where higher-order corrections in B become important can be
obtained from either of the conditions

��0�g1I+
�1� � 1 or ��0�g2

g1
� �c

�0�. �7.34�

One can check that both are equivalent to b /�2�1, which in
turn is equivalent to the physically intuitive condition

0.06 0.08 0.12 0.14
2α

ω

−50
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100

150

Re [σ ][σ ]xx , Im xx

FIG. 6. �Color online� Collective cyclotron resonance evaluated
for a small magnetic field b /�2=0.5 and in the quantum-critical
regime � /T=1 �light doping�. We plot the real and imaginary parts
of �xx��� in units of e2 /� as a function of frequency. The solid lines
were obtained from the full solution of the Boltzmann equation,
while the dashed lines are the magnetohydrodynamic prediction.
The latter relies on the smallness of b /�2, which is seen to be an
excellent approximation for the parameter chosen here. The maxi-
mum in the real part occurs at the collective cyclotron frequency
�c=�B / ��+ P�. The collisions introduce an intrinsic damping and
lead to a broadening of the resonance scaling like B2 at small
enough fields.

0.1 0.2 0.3 0.4 0.5
2α

ω

−20
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Re xx , Im[σ ][σ ] xx

FIG. 7. �Color online� Real and imaginary parts of �xx��� �in
units of e2 /�� for � /T=1 in magnetic fields b /�2=0.75,1 ,1.5
�from left to right�. The cyclotron resonance �c is essentially
proportional to B. The pair of solid lines associated with each
field value corresponds to the full solution of the Boltzmann equa-
tion. The dashed lines are the prediction of magnetohydrodynamics,
which is seen to be an excellent approximation at these small field
strengths.
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�c
typ�ee � 1, �7.35�

in both the quantum-critical and the Fermi-liquid regimes.
In order to characterize the large-field regime, we have

determined the precise location of the cyclotron resonance
by solving numerically for the zero of determinant �7.29� for
� /T=1, relying again on 12 basis functions to calculate
g1,2�� ,B�. The result is plotted in Figs. 8 and 9. We can
interpret the increase in �c beyond the hydrodynamic expres-
sion as an effect of �c

typ becoming on the order of �ee
−1: The

larger the field is, the further single particles proceed in their
unperturbed, noninteracting cyclotron orbits. Since the cy-
clotron frequency of noninteracting thermal particles is typi-
cally higher than �c, one should expect that the decrease in
the scattering probability leads to an increase in the observed
cyclotron resonance frequency, as seen in Fig. 8. Given that
the scattering is not very efficient in this large-field regime, it
is also natural that the hydrodynamic approach overestimates
the broadening of the resonance due to inelastic collisions;
cf. Fig. 9.

As we pointed out, the magnetohydrodynamic predictions
break down at large fields. This is illustrated in Fig. 10 for

the cyclotron resonance in the conductivity, which is signifi-
cantly shifted with respect to the hydrodynamic prediction.

Result �7.31� for the cyclotron pole is generally valid at
small fields for any relativistic fluid, as was shown by the
relativistic hydrodynamic analysis in Refs. 11 and 12. Quite
remarkably, this cyclotron resonance also emerged from the
solution of an exactly soluble but strongly coupled super-
symmetric conformal field theory via the AdS-CFT
mapping.18 Furthermore, the deviations from the hydrody-
namic prediction at high fields could be found numerically in
that case as well, and the trends of �c�B� , ��B� were found
to be very similar to those in Fig. 8 and 9. This is very
interesting since in the present work we are limited to weak
coupling ��1 for the Boltzmann approach to be quantita-
tively accurate.

We note that the cyclotron resonance should be readily
observable in graphene at T on the order of room tempera-
ture and in moderate magnetic fields corresponding to frac-
tions of a tesla, as discussed in Ref. 11.

D. Recovery of Kohn’s theorem

The above collective cyclotron effects are most pro-
nounced in the quantum-critical relativistic regime ����T.
As one leaves the latter, the cyclotron resonance at a given
magnetic field B becomes sharper and sharper as character-
ized by the ratio � /�c, which equals the number of applied
flux quanta per doped carrier multiplied by �Q��� �as mea-
sured in units of e2 /��. As we have seen above, �Q��� de-
cays as �T /��2 at large �. The resulting sharpening of the
resonance is clearly seen in Fig. 11, which shows �xx���
evaluated for � /T=5.

It is interesting to note that as � /T increases, the reso-
nance approaches the value

�c
�0� =

�B

� + P
→

eB

�/vF
2 =

eB

�kF/vF
, �7.36�

which one recognizes as the semiclassical cyclotron fre-
quency expected for a circular Fermi surface at wave vector
kF and Fermi velocity vF. Both observations indicate that one
recovers the familiar Fermi-liquid characteristics at large
doping.
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ωc

Exact

MHD

FIG. 8. �Color online� Real part of the cyclotron pole ����c

− i�, in units of kBT /��2, as a function of magnetic field for fixed
chemical potential � /T=1. The low-field part is correctly predicted
by relativistic magnetohydrodynamics, while at high fields �c tends
to exceed �c

MHD.
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FIG. 9. �Color online� Imaginary part of the cyclotron pole ��

��c− i�, in units of kBT /��2, as a function of magnetic field for
fixed chemical potential � /T=1. The damping at small fields is
correctly predicted by relativistic magnetohydrodynamics, while it
is overestimated at large values of b /�2.
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FIG. 10. �Color online� Real and imaginary parts of �xx��� in
units of e2 /� in a large magnetic field b /�2=10 at � /T=1. The pair
of solid lines corresponds to the full solution of the Boltzmann
equation. The dashed lines are the prediction of magnetohydrody-
namics, which fails completely for this large value of b /�2�1.
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The intrinsic broadening of the cyclotron resonance due to
collisions is an interesting effect pertaining mostly to the
quantum-critical regime ����T. As noted above, in the
Fermi-liquid regime the width � of the cyclotron resonance
tends to zero. This can be understood as reflecting the ap-
proach of a regime where Kohn’s theorem should apply as-
ymptotically: One species of quasiparticles is entirely frozen
out in this regime, and the deviation of the linear band struc-
ture from a parabolic dispersion becomes increasingly negli-
gible. These are the two conditions under which Kohn’s
theorem is valid: The latter asserts that in a system with only
one parabolic band, there is a single sharp resonance peak at
a well-defined cyclotron frequency, irrespective of the pres-
ence of electron-electron interactions.

E. Range of validity of relativistic magnetohydrodynamics

Using Eqs. �7.14� and �7.15�, one can obtain explicit ex-
pressions for the frequency-dependent response in pure sys-
tems in a magnetic field. Note the remarkable fact that the
three pairs of longitudinal and transverse response coeffi-
cients are strongly constrained: Apart from thermodynamic
data such as ��+ P� , s , T , �, and �, the formulas contain
only two independent matrix elements g1,2�� ,B ,��. To lead-
ing order in magnetic field one can even neglect the depen-
dence on g2, and all the response functions are interrelated,
with one single parameter left, corresponding directly to �Q
in the hydrodynamic formulation.

The full expressions for the response functions can easily
be worked out analytically, but the expressions are relatively
lengthy and will not be displayed here. However, it is inter-
esting to use these exact results to determine the extent to
which the magnetohydrodynamic formulas given in Sec. III
are valid. As we already know, at large fields corrections set
in, and similar corrections are to be expected at higher fre-
quencies on the order of the inelastic-scattering rate. We are
now in the position to characterize the corrections precisely.
A detailed analysis of the response shows that the following

statement holds: For small frequencies �� /�2�1� and small
fields �b /�2�1� and a fixed ratio � /b, the exact ac conduc-
tivity satisfies the asymptotic equality

�xx��,B� = �xx
MHD��,B� + O�b/�2,�/�2� . �7.37�

An analogous relation holds for all other response functions.
Hereby the expressions in Eq. �7.32�, with �Q from Eq. �5.5�,
have to be used in the magnetohydrodynamic response func-
tions given in Sec. III. It is interesting that a very similar
result was obtained from the exact solution of the strongly
coupled conformal field theory studied in Ref. 18, showing
that the validity of this statement is not restricted to weak
coupling.

VIII. CONCLUSION

We have presented a Boltzmann approach to describe
transport in liquids of interacting Dirac fermions with and
without magnetic fields. We have established that as long as
the inelastic-scattering rate is the largest scattering rate in the
problem, the relativistic hydrodynamic formalism captures
the frequency-dependent response very well. Further, we
have obtained an exact expression for the single transport
coefficient �Q that is left undetermined by hydrodynamics,
and showed that it decays as a power law as one leaves the
quantum-critical relativistic regime. At large doping the elec-
tron system was shown to recover all the signatures of a
Fermi liquid, such as Mott’s law and the Wiedemann-Franz
relation. At the same time the collective cyclotron resonance,
a remarkable feature of quantum criticality, turns gradually
into a sharp resonance centered at the semiclassical cyclotron
frequency as one dopes the system further. Finally an analy-
sis of the large-field behavior yielded similar qualitative de-
viations of the cyclotron pole from the corresponding hydro-
dynamic prediction as was found in the exact solution of a
strongly coupled conformal field theory.
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APPENDIX A: RELATIVISTIC HYDRODYNAMICS

In this appendix we discuss the hydrodynamic and consti-
tutive equations which are used to obtain the hydrodynamic
response functions given in the main part of the text. In
covariant notation, the conservation laws for a relativistic
fluid read

��J� = 0, �A1�

� T� = F��J�, �A2�

where the energy-momentum tensor and current vector of the
fluid are given by

0.155 0.16 0.165 0.17 0.175 α2
ω

−5000

5000

10000

15000

Re [σ ][σ ]xx , Im xx

FIG. 11. �Color online� Sharp cyclotron resonance in the con-
ductivity �in units of e2 /�� for � /T=5 and a moderate magnetic
field b /�2=1. Since in the Fermi-liquid regime the presence of
antiparticles �holes� can be neglected and the relevant part of the
single particle dispersion is hard to distinguish from a parabolic
dispersion, Kohn’s theorem applies approximately, the cyclotron
resonance becoming sharper and sharper at asymptotically large
� /T.
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T� = �� + P�u�u + Pg� + �� , �A3�

J� = �u� + !�, �A4�

where � is the energy density, P is the pressure, � is the
charge density, g�!=diag�−1,1 ,1� is the Lorentz metric, and
F�! is the electromagnetic-field tensor. Note that the role of
the speed of light is taken by the Fermi velocity vF. The
velocity field u� �in units of vF� is determined in such a way
that there is no energy flow in the local rest frame where
u�= �1,0�. Notice that due to the presence of heat flows, this
does not coincide in general with the velocity defined by the
average charge current.

The additional terms in Eqs. �A1� and �A2� are dissipative
contributions: The Reynolds tensor ��! accounts for viscous
forces, which turn out to be irrelevant for small wave-vector
response. The vector !� is proportional to the heat current.
To obtain a closed set of equations, one has to express the
heat current in terms of local quantities. In a relativistic sys-
tem, its form is strongly constrained by covariance and the
requirement that the entropy of the liquid always increases.
The divergence of the entropy current follows from the equa-
tions of motion as

���su� −
�

T
!�	 = − !�
����

T
	 −

1

T
F��u�� −

���

T
��u�,

�A5�

where we have used the thermodynamic identity �+ P−��
=sT for the entropy density s. The requirement that the left-

hand side be positive and the assumption that the heat cur-
rent should be linear in the gradients of T and �, as well as
in the electromagnetic fields �i.e., the gradients of the scalar
and vector potentials�, impose that

!� = − �Q�g�� + u�u��
T����

T
	 − F��u�� . �A6�

A similar relation holds for ���. This leaves us with a single
undetermined transport coefficient �Q�0 with units of con-
ductivity. Note that in the relativistic case the heat current is
proportional not only to the thermal gradient but also to the
acceleration of the fluid element �second term�. Note that the
assumption that !� is linear in F�! restricts the above argu-
ment to small fields B.

APPENDIX B: MATRIX ELEMENTS OF TERMS IN THE
BOLTZMANN EQUATION

1. Matrix elements in a general basis

In this appendix we give explicit expressions for the ma-
trix elements appearing in the Boltzmann equation after a
projection onto a specific basis of modes. The collision inte-
gral describing electron-electron scattering as well as impu-
rity scattering is given by

Icoll��,k,t��f�� = 2��2� d2k1

�2��2

d2q

�2��2 ���k − k1 − �k + q� + �k1 − q��R1�k,k1,q��f��k,t�f−��k1,t��1 − f��k + q,t��


�1 − f−��k1 − q,t�� − �1 − f��k,t���1 − f−��k1,t��f��k + q,t�f−��k1 − q,t��


��k + k1 − �k + q� − �k1 − q��R2�k,k1,q��f��k,t�f��k1,t��1 − f��k + q,t��


�1 − f��k1 − q,t�� − �1 − f��k,t���1 − f��k1,t��f��k + q,t�f��k1 − q,t��� + 2�� d2k1

�2��2��k − k1��U���2�f��k,t�


�1 − f��k1,t�� − �1 − f��k,t��f��k1,t�� , �B1�

where

R1�k,k1,q� =
4

�2 ��T+−−+�k,k1,q� − T+−+−�k,k1,− k − q + k1��2 + �N − 1��T+−−+�k,k1,q��2 + �N − 1��T+−+−�k,k1,− k − q + k1��2� ,

R2�k,k1,q� =
4

�2
1

2
�T++++�k,k1,q� − T++++�k,k1,k1 − k − q��2 + �N − 1��T++++�k,k1,q��2� , �B2�

and the disorder potential U�� was introduced in Eq. �2.13�. The inelastic-scattering rate is proportional to �2, and the matrix
entries of the electron-electron scattering matrix MCoulomb read explicitly

Mmn
Coulomb = 2��2�

�
� d2k

�2��2

d2k1

�2��2

d2q

�2��2��k + k1 − �k + q� − �k1 − q���m��,k��R1�k,q − k1,q��1 − f�k
0 �


�1 − f−��k1−q�
0 �f−�k1

0 f��k+q�
0 
 ek · �ek�n��,k� + ek1

�n�− �,k1� − ek+q�n��, �k + q�� − ek1−q�n�− �, �k1 − q���

+ R2�k,k1,q��1 − f�k
0 ��1 − f�k1

0 �f��k+q�
0 f��k1−q�

0 
 ek · �ek�n��,k� + ek1
�n��,k1�

− ek+q�n��, �k + q�� − ek1−q�n��, �k1 − q���� , �B3�
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where

f�k
0
ª

1

e�k−� + 1
. �B4�

The entries in the impurity scattering matrix Mimp are given
by

Mmn
imp = 2���

�
� d2k

�2��2

d2k1

�2��2

��k − k1�
�k − k1�2

f�k
0 �1 − f�k1

0 ��m��,k�


��n��,k� − ek · ek1
�n��,k1�� , �B5�

where the strength of disorder is measured by the dimension-
less parameter

� = �2� Ze2

kBT�r
	2

nimp. �B6�

The matrix for the time derivative reads

Mmn
i� = i��

�
� d2k

�2��2 f�k
0 �1 − f�k

0 ��m��,k��n��,k� .

�B7�

Finally, the deflection of currents by the magnetic field is
described by a matrix with entries

Bmn = b�
�
� d2k

�2��2 f�k
0 �1 − f�k

0 �
�

k
�m��,k��n��,k� ,

�B8�

where the dimensionless parameter measuring the field
strength is given by

b =
eBvF

2

�kBT�2 . �B9�

The projection of the driving terms due to an electric field
or a temperature gradient onto the basis functions yields the
vectors

Fm
E = �

�

�� d2k

�2��2 f�k
0 �1 − f�k

0 ��m��,k� ,

Fm
T = − �

�
� d2k

�2��2 �k − ���f�k
0 �1 − f�k

0 ��m��,k� .

�B10�

2. Two-mode approximation

Here, we evaluate the matrix elements with respect to the
two main modes, �0 ,�1, of the specific bases �4.25�–�4.27�.
In the sector spanned by these two modes, the electron-
electron collision operator takes the form

MCoulomb = �0 0

0 M11
Coulomb���

	 , �B11�

where

M11
Coulomb��� = �2�

�

2�

4
� d2k

�2��2

d2k1

�2��2

d2q

�2��2


���k − k1 − �k + q� + �k1 − q��R1�k,k1,q�


 �1 − f�k
0 ��1 − f−�k1

0 �f��k+q�
0 f−��k1−q�

0


 
k

k
−

k1

k1
−

�k + q�
�k + q�

+
�k1 − q�
�k1 − q� �2

+ ��k + k1 − �k + q� − �k1 − q��R2�k,k1,q�


 �1 − f�k
0 ��1 − f�k1

0 �f��k+q�
0 f��k1−q�

0


 
k

k
+

k1

k1
−

�k + q�
�k + q�

−
�k1 − q�
�k1 − q� �2� . �B12�

The matrix elements of all other operators can be expressed
with the help of the functions

Is=

�n� ��� =

N

2 �
�
� dk

2�
��s,+ + ��s,−�knf�k

0 �1 − f�k
0 �

=
N

2 
�n,0�s,+

2�
+ n�

�
� dk

2�
��s,+ + ��s,−�knf�k

0 � ,

where a partial integration was used to obtain the right-hand-
most side of the equation. One easily verifies the explicit
relations

I+
�0� =

N

2

1

2�
, �B13�

I−
�0� =

N

2

tanh��/2�
2�

, �B14�

I+
�1� =

N

2

1

�
ln�2 cosh��/2�� , �B15�

I−
�1� =

N

2

�

2�
, �B16�

I+
�2� = �+ + �−, �B17�

I−
�2� = �+ − �− = � , �B18�

I+
�3� = � + P =

3

2
� , �B19�

where �
 are the number densities of particles and holes,
respectively, and � is the charge density in units of e. The last
relation follows since in a two-dimensional relativistic liquid
P=� /2. This is a consequence of the energy-momentum ten-
sor being traceless, a relation that can easily be checked ex-
plicitly for free Dirac fermions.

In order to analyze the Fermi-liquid regime, it is conve-
nient to have the asymptotic form of I�

�n� for large � at hand.
From a standard Sommerfeld expansion, one finds
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I�
�0���� �

N

2

1

2�
,

I�
�1���� �

N

2

�

2�
,

I�
�2���� �

N

2

 �2

2�
+

�

6
� ,

I�
�3���� �

N

2

 �3

2�
+

�

2
�� �B20�

up to corrections of order O(exp�−��).
In the two-mode approximation, the scattering from Cou-

lomb impurities is described by

Mimp =
2

N
��I+

�2���� I−
�1����

I−
�1���� I+

�0����
	 , �B21�

and the matrix for the time derivative takes the form

Mi� = − i�
2

N
�� + P �

� I+
�1����

	 . �B22�

Finally, the matrix describing the deflection by the magnetic
field has the two-mode representation

B = b
2

N
� � I+

�1����
I+

�1���� I−
�0����

	 . �B23�

Due to choice �4.27�, the driving fields only have compo-
nents along �0 and �1 given by

F� E =
2

N
� �

I+
�1����

	 �B24�

and

F� T =
2

N
� � + P − ��

� − �I+
�1����

	 =
2

N� s

� −
N

2

�

�
ln�2 cosh��/2�� � .

�B25�

APPENDIX C: INELASTIC-SCATTERING RATE IN THE
FERMI-LIQUID REGIME

In this appendix we analyze the behavior of the matrix
element M11

Coulomb in the limit of large chemical potential �
�T, in order to estimate the quantity g1

−1 which determines
the inelastic-scattering rate. The phase space for the outer k
integral in Eq. �B12� scales like �T. Further, given a momen-

tum transfer q, the integral over k1 over the energy conserv-
ing � function scales like T� / �q�, where the factor 1 / �q� is
due to the derivative of the argument of the � function. The
factors R1,2 scale like �2 / �q�2 if the Coulomb interactions are
not screened; thus, for small q the integral over the momen-
tum transfer behaves like �d2qq−3. The infrared divergence is
cut off by the square of the difference of distribution func-
tions g��k�, which provides an extra factor of q2 at small q.
The cut-off scale is set by the typical range over which g�k
+q� varies, which is q�T. Consequently the integral is
dominated by q�T, which contributes a phase-space factor
T2. In the final estimate of g1

−1��� we need to take into ac-
count that the relevant mode for electrical conductivity, �1,
has a strong overlap with the zero mode �0 when k is re-
stricted to the thermally relevant vicinity of the Fermi level
�. Since �0 is a zero mode of the integral, only the part of �1
orthogonal to �0 contributes, and this provides an extra fac-
tor of �T /��2. Putting all these factors together and multiply-
ing by a normalizing factor 1 /T3, we find that unscreened
electron-electron interactions are dominated by small mo-
mentum transfer of order q�T, leading to a scattering pa-
rameter

g1
−1��� �

�2

T3
�T
T�

q

q2

�q�2
T2

�2�
q�T

= O�1� , �C1�

which tends to a constant value.
The inelastic-scattering rate can be estimated from a simi-

lar expression, where the first k integral and the normaliza-
tion factor are dropped. Looking at the relaxation of modes
g�k� that have a variation of order O�1� over an interval of
order O�T� around k=�, there is no suppression factor from
the square of differences in g��k�. We obtain the estimate

�ee
−1 � �2
T�

q

q2

�q�2�q�T

� �2� . �C2�

This is indeed consistent with expression �5.6� upon using
estimate �5.7�.

If we include screening of the interactions, the scattering
is eventually dominated by q��, while the phase-space in-
tegral of the k1 integral contributes qT instead of q2. This
leads to

g1,sc
−1 ��� �

�2

T3
�T
T�

q

qT

�q�2
T2

�2�
q��

= O��2 T2

�2	 , �C3�

and the analogous estimate for �ee yields the familiar Fermi-
liquid behavior

�ee,sc
−1 � �2
T�

q

qT

�q�2�q��

� �2T2

�
. �C4�
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